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Abstract. In this paper we propose a methodology for semantic index-
ing of images, based on techniques of image segmentation, classification
and fuzzy reasoning. The proposed knowledge-assisted analysis architec-
ture integrates algorithms applied on three overlapping levels of semantic
information: i) no semantics, i.e. segmentation based on low-level features
such as color and shape, ii) mid-level semantics, such as concurrent im-
age segmentation and object detection, region-based classification and,
iii) rich semantics, i.e. fuzzy reasoning for extraction of implicit knowl-
edge. In that way, we extract semantic description of raw multimedia
content and use it for indexing and retrieval purposes, backed up by a
fuzzy knowledge repository. We conducted several experiments to eval-
uate each technique, as well as the whole methodology in overall and,
results show the potential of our approach.

1 Introduction

Production of digital content has become daily routine for almost every person,
leading to an immense size of accessible multimedia data. Consequently, pub-
lic and research interest has partly shifted from the production of multimedia
content to its efficient management, making apparent the need of mechanisms
for automatic indexing and retrieval, thematic categorization and content-based
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Fig. 1. Overview of the proposed architecture.

search (among many others). Efficient multimedia content management and us-
ability requires focus on the semantic information level, with which most users
desire to interact; other than that would render any results ineffective.

The importance of semantic indexing and retrieval of multimedia has brought
out several benchmarking activities, such as TRECVID [11] with increasing par-
ticipation every year. Most approaches in semantic-based analysis and indexing
are grounded on multimedia segmentation and object recognition techniques.
The majority of classification techniques employ statistical modeling, associating
low-level visual features with mid-level concepts [8]. There have been proposed
techniques for region-based classification using machine learning techniques such
as Self Organizing Maps (SOMs) [5], Genetic Algorithms [10], Support Vector
Machines (SVMs) [16, 10] and biologically inspired optimization techniques. To
achieve better recognition rates, it has been found that, it is better to fuse mul-
tiple simple classifiers than to build a single sophisticated classifier [4].

During the late years, various attempts were made in order to extract compli-
cated concepts using multimedia analysis results combined with taxonomies and
ontologies. In [12] WordNet is used to include lexical relationships between ab-
stract and detected mid-level concepts. Ontologies based on Description Logics
(DLs) [3] are a family of knowledge representation languages; however, despite
the rich expressiveness of DLs, they lack the ability to deal with vague and un-
certain information which is commonly found in multimedia content. This was
the reason that a variety of DLs capable of handling imprecise information, like
probabilistic and fuzzy [14, 13] have been proposed.

Within this context, our paper presents a knowledge assisted image analysis
and semantic annotation methodology consisting of several novel and state-of-
the-art techniques. As depicted in Figure 1, we discuss methods for semantic-
aware segmentation, object detection and recognition, as well as detection of
abstract concepts that cannot be detected directly, but can only be inferred
using higher level knowledge. We follow a bottom-up approach and therefore
we initially segment the image based on color and shape criteria, followed by a



novel semantic region growing methodology which incorporates object detection
simultaneously with region merging that improves extraction of semantic objects.

Next, two different classification approaches are employed and used for recog-
nition of several concepts: i) Support Vector Machines and ii) a biologically in-
spired classifier. Combination of multiple classifier decisions is a powerful method
for increasing classification rates in recognition problems. We fuse the two sets of
classification results, using a neural network based on evidence theory method,
obtaining a single list of concepts with degrees of confidence for all regions.

So far a list of concepts (together with degrees of confidence for each one)
have been linked to the image. Our goal lies beyond this and we want to extract
additional, implicit knowledge, improve region-based classification by incorpo-
rating spatial relations and neighborhood information and finally infer abstract
concepts on a global image basis. Towards this aim, a fuzzy reasoning engine
is employed. The final results are stored in an online semantic repository, in a
strictly structured format, allowing query mechanisms for semantic retrieval.

The manuscript is structured as follows: Section 2 details the mechanism of
each algorithm used towards a bottom-up image classification. Section 3 presents
the role of fuzzy multimedia reasoning and its application in fuzzy semantic in-
dexing, storing in appropriate knowledge bases and querying mechanisms for
retrieval purposes. We provide extended experimental results of the overall ap-
proach in section 4 and we draw our conclusions in section 5.

2 Bottom-up Image Classification

In this section we describe a series of image analysis techniques, whose integra-
tion leads to the detection and recognition of a set of concepts used as the basis
for the semantic handling of the content. As a bottom-up technique, it starts
from the pixel level jumping to the region level using a color and shape image
segmentation, further refined with a semantic region growing technique (subsec-
tion 2.1). Two classifiers are used in parallel, described in subsection 2.2, which
assign concepts in a fuzzy manner (i.e. with a degree of confidence) for each
region of the image. The last subsection presents a fusion mechanism, based on
a neural network, which fuses the results of the two classifiers and produces a
single set of concepts detected in the image. This set of concepts provides the
initial vocabulary for the semantic description of the image.

2.1 Semantic Image Segmentation

Initially, a segmentation algorithm, based on low-level features such as color
and shape [1], is applied in order to divide the given image into a set of non
overlapping regions. In previous work ([2]) we have shown how extracted visual
descriptors can be matched to visual models of concepts resulting to an initial
fuzzy labeling of the regions with concepts from the knowledge base, i.e. for
region a we have the fuzzy set (following the sum notation [7]) La =

∑
k Ck/wk,

where k = 1, . . . , K, K is the cardinality of the crisp set of all concepts C = {Ck}



in the knowledge base and wk = µa(Ck) is the degree of membership of element
Ck in the fuzzy set La.

Segmentation based only on syntactic features usually creates more regions
than the actual number of objects. We examine how a variation of a traditional
segmentation technique, the Recursive Shortest Spanning Tree (RSST) can be
used to create more semantically coherent regions in an image. The idea is that
neighbor regions, sharing the same concepts, as expressed by the labels assigned
to them, should be merged, since they define a single object. To this aim, we
modify the RSST algorithm to operate on the fuzzy sets of labels L of the volumes
in a similar way as if it worked on low-level features (such as color, texture) [2].
The modification of the traditional algorithm to its semantic equivalent lies on
the re-definition of the two criteria: (i) The dissimilarity between two neighbor
regions a and b (vertices va and vb in the graph), based on which graph’s edges
are sorted and (ii) the termination criterion. For the calculation of the similarity
between two regions we defined a metric between two fuzzy sets, those that
correspond to the candidate concepts of the two regions. This dissimilarity value
is computed according to the following formula and is assigned as the weight of
the respective graph’s edge eab:

w(eab) = 1− sup
Ck∈C

(>(µa(Ck), µb(Ck))) (1)

where > is a t-norm, a and b are two neighbor regions and µa(Ck) is the degree
of membership of concept Ck ∈ C in the fuzzy set La.

Let us now examine one iteration of the S-RSST algorithm. Firstly, the edge
eab with the least weight is selected, then regions a and b are merged. Vertex
vb is removed completely from the ARG, whereas va is updated appropriately.
This update procedure consists of the following two actions:

1. Re-evaluation of the degrees of membership of the labels fuzzy set in a
weighted average (w.r.t. the regions’ size) fashion.

2. Re-adjustment of the ARG edges by removing edge eab and re-evaluating
the weight of the affected edges.

This procedure continues until the edge e∗ with the least weight in the ARG
is bigger than a threshold: w(e∗) > Tw. This threshold is calculated in the
beginning of the algorithm, based on the histogram of all weights of the set of
all edges.

2.2 Region Classification

SVM-based Classification. SVMs have been widely used in semantic image
analysis tasks due to their reported generalization ability and their efficiency in
solving high-dimensionality pattern recognition problems [15]. Under the pro-
posed approach, SVMs are employed for performing the association of the com-
puted image regions to one of the defined high-level semantic concepts based
on the estimated region feature vector. In particular, a SVM structure is uti-
lized, where an individual SVM is introduced for every defined concept Ck ∈ C,



to detect the corresponding instances. Every SVM is trained under the ‘one-
against-all’ approach. The region feature vector, consisting of seven MPEG-7
visual descriptors, constitutes the input to each SVM, which at the evaluation
stage returns for every image segment a numerical value in the range [0, 1]. This
value denotes the degree of confidence, µa(Ck), to which the corresponding region
is assigned to the concept associated with the particular SVM [10]. For each re-
gion, the maximum of the K calculated degrees of confidence, argmax(µa(Ck)),
indicates its concept assignment, whereas the pairs of all supported concepts and
their respective degree of confidence µa(Ck) computed for segment a comprise
the region’s concept hypothesis set HC

a = {µa(Ck)}.

Bio-inspired Classifier. Neural network based clustering and classification has
been dominated by Self Organizing Maps (SOMs) and Adaptive Resonance The-
ory (ART). In competitive neural networks, active neurons reinforce their neigh-
bourhood within certain regions, while suppressing the activities of other neu-
rons. This is called on-center/off-surround competition. The objective of SOM
is to represent high-dimensional input patterns with prototype vectors that can
be visualized in a usually two-dimensional lattice structure. Input patterns are
fully connected to all neurons via adaptable weights. During the training pro-
cess, neighbouring input patterns are projected into the lattice, corresponding to
adjacent neurons. An individual SOM network is employed to detect instances
of the defined high-level semantic concepts. Each SOM is trained under the one
against all approach. In the basic training algorithm are the prototype vectors
trained according to md(t+1) = md(t)+gcd(t)[x−md(t)] where md is the weight
of the neurons in the SOM network, gcd(t) is the neighbourhood function and d
is the dimension of the input feature vector. Each SOM network corresponding
to defined high-level concept returns for every segment a numerical value in the
range of [0, 1], denoting the degree of confidence to which the corresponding
region is assigned to the concept associated with the particular SOM.

2.3 Classifier Fusion

In this section, we describe how the evidence theory can be applied to fusion
problems and outline our recently proposed neural network based on evidence
theory (NNET) to address classifier fusion [4]. The objective is to associate for
each object x (image region), one class from the set of classes Ω = {w1, .., wK}.
In our case, the set of classes is equivalent to the set of concepts C, defined
previously. This association is given via a training set of N samples, where each
sample can be considered as a part of belief for one class of Ω. This belief degree
can be assimilated to evidence function mi, with 2 focal elements: The class of
xi noted wq, and Ω. So, if we consider that the object xi is near to x, then a part
of belief can be affected to wq and the rest to Ω. The mass function is obtained
by decreasing function of distance as follows:

{
mi({wq}) = αiφq(di)
mi(Ω) = 1− αiφq(di) (2)



Where φ(.) is a monotonically decreasing function such as an exponential func-
tion φq(di) = exp (−γq(di)2), and di is an Euclidean distance between the vector
x and the ith vector of training base. 0 < α < 1 is a constant which prevents a
total affectation of mass to the class wq when x and ith samples are equal. γq is
a positive parameter defining the decreasing speed of mass function. A method
for optimizing parameters (α, γq) has been described in [6]. We obtain N mass
functions, which can be combined into a single one using (3):

m(A) = (m1 ⊕ ...⊕mN ) =
∑

(B1
⋂

...
⋂

BN )=A

N∏

i=1

mi(Bi) (3)

We propose to resume work already made with the evidence theory in the
connectionist implementation [4, 6], and to adapt it to classifier fusion. For this
aim, an improved version of RBF neural network based on evidence theory which
we call NNET, with one input layer Linput, two hidden layers L2 and L3 and
one output layer Loutput has been devised.

Layer Linput. It contains N units and is identical to an RBF network input
layer with an exponential activation function φ. d is a distance computed using
training data and dictionary created (clustering method). K-means is applied on
the training data in order to create a ”visual” dictionary of the regions.

Layer L2. Computes the belief masses mi (2) associated to each prototype. It
is composed of N modules of K+1 units each mi = (mi({w1}), ..., mi({wK+1})) =
(ui

1s
i, ..., ui

Ksi, 1−si) where ui
q is the membership degree to each class wq, q class

index q = {1, ..., K}. The units of module i are connected to neuron i of the pre-
vious layer. Note that each region in the image can belong to only one class.

Layer L3. The Dempster-Shafer combination rule combines N different mass
functions in one single mass, given by the conjunctive combination (3). For

this aim, the activation vector
→
µi can be recursively computed by µ1 = m1,

µi
j = µi−1

j mi
j + µi−1

j mi
K+1 + µi−1

K+1m
i
j and µi

K+1 = µi−1
K+1m

i
K+1

Layer Loutput. In [6], the output is directly obtained by Oj = µN
j . The exper-

iments show that this output is very sensitive to the number of prototype, where
for each iteration, the output is purely an addition of ignorance. Also, we notice
that a small change in the number of prototype can change the classifier fusion

behavior. To resolve this problem, we use normalized output: Oj =
∑N

i=1 µi
j∑N

i=1
∑K+1

j=1 µi
j

.

Here, the output is computed taking into account the activation vectors of all
prototypes to decrease the effect of an eventual bad behavior of prototype in the
mass computation.

The different parameters (∆u, ∆γ, ∆α, ∆P , ∆s) can be determined by
gradient descent of output error for an input pattern x. Finally, the maximum
of plausibility Pq of each class wq is computed: Pq = Oq + OK+1.

3 Fuzzy Reasoning and Indexing

Image classification algorithms can provide reliable results on the recognition of
specific concepts, however, it is very difficult to recognize higher-level concepts



that do not have specific low-level features. That kind of concepts can be effec-
tively represented by an ontology capable of handling the imprecise information
provided by image segmentation and classification algorithms. A DL that fullfills
these requirements is f-SHIN [13]. Using fuzzy reasoning engine FiRE5, which
supports f-SHIN and its reasoning services, we improve region-based classifi-
cation results and extract additional implicit concepts that categorize an image.
The extracted information is stored in a semantic repository permitting fuzzy
conjunctive queries for semantic image and region retrieval.

3.1 Fuzzy Reasoning Services and Querying

A f-SHIN knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy TBox, R
is a fuzzy RBox and A is a fuzzy ABox. TBox is a finite set of fuzzy concept
axioms which are of the form C ≡ D called fuzzy concept inclusion axioms and
C v D called fuzzy concept equivalence axioms, where C, D are concepts, saying
that C is equivalent or C is a sub-concept of D, respectively. Similarly, RBox is
a finite set of fuzzy role axioms of the form Trans(R) called fuzzy transitive role
axioms and R v S called fuzzy role inclusion axioms saying that R is transitive
and R is a sub-role of S respectively. Ending, ABox is as finite set of fuzzy
assertions of the form 〈a : C./n〉, 〈(a, b) : R./n〉, where ./ stands for ≥, >,≤ or
< or a 6 .= b. Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that
the membership degree of a to the concept C is at least equal to n. Finally,
assertions defined by ≥, > are called positive assertions, while those defined by
≤, < negative assertions.

The main reasoning services of crisp reasoners are deciding satisfiability, sub-
sumption and entailment of concepts and axioms w.r.t. an Σ. In other words,
these tools are capable of answering queries like “Can the concept C have any
instances in models of the ontology T?” (satisfiability of C), “Is the concept D
more general than the concept C in models of the ontology T ?” (subsumption
C v D) of does axiom Ψ logically follows from the ontology (entailment of Ψ).
These reasoning services are also available by FiRE together with greatest lower
bound queries which are specific to fuzzy assertions. Since in fuzzy DLs individu-
als participate in concepts and are connected with a degree, satisfiability queries
are of the form “Can the concept C have any instances with degree of partici-
pation ./n in models of the ontology T ?”. Furthermore, it is in our interest to
compute the best lower and upper truth-value bounds of a fuzzy assertion. The
term of greatest lower bound of a fuzzy assertion w.r.t. Σ was defined in [14].
Greatest lower bound are queries like “What is the greatest degree n that our
ontology entails an individual a to participate in a concept C?”.

In order to store the fuzzy knowledge base produced by FiRE in a Sesame
RDF Repository we serialize it into RDF triples. For this purpose, we use blank
nodes in order to represent fuzzy information by defining three new entities:
frdf:membership, frdf:degree and frdf:ineqType as types of rdf:Property
while properties are defined for each role assertion. In that way, Sesame is used

5 FiRE can be found at http://www.image.ece.ntua.gr/~nsimou/FiRE/



as a back end for storing and querying RDF triples while FiRE is the front end
by which the user can store and query a fuzzy knowledge base.

Since in our case we extend classical assertions to fuzzy assertions, new meth-
ods of querying such fuzzy information are possible. More precisely, in [9] the
authors extend ordinary conjunctive queries to a family of significantly more
expressive query languages, which are borrowed from the fields of fuzzy informa-
tion retrieval. These languages exploit the membership degrees of fuzzy asser-
tions by introducing weights or thresholds in query atoms. Similarly using FiRE
and Sesame permits conjunctive fuzzy queries. Queries are converted from the
FiRE syntax to the SeRQL query language supported by Sesame. Sesame engine
evaluates the results which are then visualized by FiRE.

Queries consist of two parts: the first one specifies the individual(s) that will
be evaluated while the second one states the condition that has to be fulfilled for
the individuals. This query asks for individuals x and y, x has to participate in
concept Beach to at least 0.7, it also has to be the subject of a contains assertion
with participation greater than 1, having as a role-filler individual y which has
to participate in concept Person to at least 0.8.

3.2 The fuzzy knowledge base

In order to effectively categorize images and also improve the semantic segmen-
tation process we have implemented an expressive terminology. The terminology
defines new concepts that characterize an image and also refines concepts ex-
tracted by the classification modules considering regions’ spatial configuration.

First, we present the input used as the assertional part of the fuzzy knowl-
edge base provided by the analysis modules. After an initial segmentation, an
image is divided into a number of segments. Their spatial relations extracted
by the semantic RSST comprise the RBox of the fuzzy knowledge base. The
classification algorithms evaluate a participation degree in a set of concepts for
every segment. The obtained results are then fuzzed and used as positive asser-
tions to represent the ABox of the fuzzy knowledge base. Hence, the alphabet of
concepts C and roles R is: C = {Sky Building Person Rock Tree Vegetation Sea
Grass Ground Sand Trunk Dried-plant Pavement Boat Wave} and R ={above-of
below-of left-of right-of contains}. The set of individuals consist of the amount
of segments obtained for each image together with the whole image. The TBox
can be found in Table 1. As can be observed, concepts like Sky that are extracted
by the classification modules have been re-defined using spatial relations.(Those
concepts are shown in capitals.) Hence, SKY has been defined as a segment that
was classified as Sky and has a above− of neighbor that is either Sea or Building
or Vegetation. Additionally, higher concepts that refer to a segment have been
defined like WavySea and SandyBeach also concepts like Beach that refer to the
whole image and categorize it. Within our knowledge base Beach has been de-
fined as an image that contains segments labeled as Sky and Sea. According to
the defined terminology implicit knowledge is extracted. For every image great-
est lower bound (glb) reasoning service is used for the defined concepts of the



Table 1. The terminology TBox.

T = {SKY ≡ Sky u (∃above− of.Sea t ∃above− of.Building t ∃above− of.Vegetation) ,
SAND ≡ Sand u ∃below − of.Sea,

PAVEMENT ≡ Pavement u ∃below − of.Building,
TRUNK ≡ Trunk u (∃above− of.Ground t ∃above− of.Grass),

VEGETATION ≡ Grass t Tree t Vegetation,

WavySea ≡ Sea uWave,
SandyBeach ≡ Sea u Sand,

PartOfComplexBuilding ≡ Building u (∃left− of.Building t ∃right− of.Building),

Beach ≡ ∃contains.Sea u ∃contains.SKY,
Landscape ≡ ∃contains.VEGETATION,

City ≡ ∃contains.Building t ∃contains.Pavement}
R = {contains, left− of− = right− of, above− of− = below − of}

terminology. The obtained implicit results together with the explicit information
provided by classifiers(i.e. ABox) are stored to a Sesame repository.

4 Experimental Results

In this section we present a series of experiments conducted to demonstrate the
gain achieved using the proposed approach in comparison to other techniques.
We have set up two datasets of images: One consisting of 500 images, which
is accompanied by ground truth at the image level, i.e. we know that concepts
either exist or not in the whole image, without any information to which region
correspond. The second dataset consists of 350 images, for which we have a finer
grained ground truth at a region level, i.e. annotation for every region (2185
regions in total).

In order to evaluate the performance of our integrated approach we compare
the recognition rates to those of each individual classifier, as well as to a basic
classification method. In the case of the first dataset we had to align the available
image level ground truth to the region level classification results. We assumed
that when a region has been classified to a concept with a certain degree of
confidence, then the maximum degree (over all regions) can be propagated to
the image itself. Following this procedure for every concept we end up with a
list of concepts and confidence values detected somewhere in the image.

First Experiment: Evaluation at the image level. For this first experiment,
we calculated the performance of a simple classification approach which is based
on a simple color RSST segmentation, descriptor extraction and SVM classifica-
tion. We examined the performance of the semantic segmentation, of the SVM
classifier (2.2), of the bio-inspired classifier (2.2), as well as that of the fusion
mechanism (2.3). Figure 2a illustrates the precision rate of the above four algo-
rithms for all 15 concepts. Additionally we calculated the overall performance of



Sky Build. Pers. Rock Tree Veget. Sea Gras.Groun.Sand Trunk Plant Pave. Boat Wave
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Concept

P
re

ci
si

on

Segm+SVM
Classifier 1 (SVM)
Classifier 2 (PSO)
Classifiers Fusion

(a)

0 Sky Build. Pers. Rock Tree Veget. Sea Gras.Groun.Sand Trunk Plant Pave Boat Wave MAP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Concepts

A
ve

ra
ge

 P
re

ci
si

on

 

 
Classifier 1 (SVM)
Classifier 2 (PSO)
Selection
Classifier Fusion

(b)

Fig. 2. Precision for the different classification results for every concept.

the above four techniques, irrespectively to the concept, using a weighted aver-
age of precision and recall values of each concept. Each concept’s weight depends
on the frequency of appearance of that concept in the dataset according to the
ground truth. Moreover, the weighted harmonic mean (F-measure) of precision
and recall was calculated to measure the effectiveness of the classification. In
the application of multimedia indexing, we consider precision more important
measure than recall, since it is the user’s preference to retrieve relevant content
with little noise, rather than all the available relevant dataset (which is usually
of immense size) and therefore in the computation of the harmonic mean the
precision to recall rate is 2:1. The first three columns of Table 2 provide those
figures. It is apparent that the NNET fusion provides the best precision for every
single concept and also is the most effective (according to the F-measure), while
the bio-inspired classifier tops in the recall figures.

Moreover, we calculated the precision and recall of a selected subset of con-
cepts, the most frequent in the dataset. We observe (Table 2 last three columns)
a significant increase of all figures, which can be explained by the fact that clas-
sifiers were better trained since more example samples were available. We have
selected the 6 most frequent concepts, which correspond approximately to the
two thirds of detected concepts in the whole dataset.

Table 2. Average classification results for all concepts (image level granularity).

All Concepts Frequent Concepts

Technique Prec. Rec. F-meas. Prec. Rec. F-meas.

Segm+SVM 0.45 0.58 0.48 0.57 0.63 0.58
Clasif.1 (SVM) 0.45 0.57 0.48 0.56 0.64 0.58
Clasif.2 (PSO) 0.44 0.82 0.52 0.56 0.85 0.63
NNET Fusion 0.48 0.71 0.54 0.60 0.72 0.64



Second Experiment: Evaluation at the region level. In order to demon-
strate the significance of our region-based approach to semantically index images,
we set up another experiment, based on the second dataset, for which we have
ground truth on the region level. The classification task consists of retrieving
regions expressing one of the considered semantic concepts. The performance
has been measured using the standard precision and recall metrics. We are in-
terested by the average precision to have the measure of the ability of a system
to present only relevant regions.

Figure 2b shows the average precision for the four systems (PSO, SVM for
classification, and our NNET in fusion, along with a simple selection approach
based on the best classifier output over a validation set). We observe that our
fusion model achieves respectable performance with respect to the number of
concepts detected, in particular for certain semantic concepts (Building, Person,
Tree, Sea, Grass, Sand and Dried plant). Here, NNET fusion combines the con-
verging classifier outputs (PSO and SVM) to obtain an effective decision which
improves upon the individual classifier outputs. In comparison to the classifier
chosen by the selection, which due to low data representativity of the valida-
tion set has not allowed the best detection in the test set, the fusion mechanism
is more robust. Interesting findings are obtained for the concepts (Vegetation,
Pavement and Boat). The performance of fusion is lower than the result given
by one of the two classifiers. This is due to both numerous conflicting classifi-
cation and limited training data. This also explains the extreme cases obtained
for concepts Ground and Trunk.

In order to measure the overall performance for the region-based image clas-
sification, we calculate the Mean Average Precision (MAP). The PSO classifier
detects concepts with more precision than the SVM classifier, MAPPSO = 0.30
and MAPSV M = 0.23, while NNET fusion combines the two classifiers and
allows an overall improvement MAPNNET = 0.33. We observe that these fig-
ures are pretty lower than those of Table 2 (0.48 − 0.54), but this should be
expected since this evaluation metric has region level granularity. For instance,
when searching for images of people in a beach (see also example in the fol-
lowing subsection) the evaluation metric for the image as a whole will consider
the maximum degree of confidence for the concept Person, while the region-level
approach will also detect the exact position of it in the image. This, we think,
is a reasonable trade-off between spatial accuracy and global precision rate.

5 Conclusions

This paper contributes to the semantic indexing of images based on algorithms of
varying granularity of semantic information, each one targeting to solve partially
the problem of bridging the semantic gap. The integrated framework consists of
a novel semantic image segmentation technique, a bottom-up image classifica-
tion using two classifiers of different philosophy and a neural network to fuse
the results of the classifiers. This intermediate outcome is further refined and
enriched using fuzzy reasoning based on domain-specific knowledge in the for-



mal representation of fuzzy description logics. Finally, the semantic description
of the image is stored in a knowledge base which facilitates querying and re-
trieving of images. Future work of the authors includes implementation of more
robust classifiers, integration of richer semantics and broader knowledge, as well
as extension to video sequences.
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